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j Abstract

The results in [1,2] for the matrix LyapurLov equation are extended to the case

of an algebraic matrix Riccati equation. Some errors in [1,2] are pointed out by

a counter example. The estimations obtained in this note are shown to be exact for

certain cases . Similar results are possible for the discrete algebraic matrix

Riccati equation.
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i. Introduction

Lower bounds of the solution K to the matrix Lyapunov equation

A ’ K + K A + Q = O  (1)

have been obtained in [1,2] in terms of {A,Q). Equation (1) is related to

the linear constant homogeneous system

c(t) Ax(t), x(t ) = x
0
. (2)

The well known result is that the system (2) is asymptotically stable if and only

if for each positive definite matrix Q there exists a positive definite solution

K to (1). We consider in this note the algebraic matrix Riccati equation

A ’ K + K A - K B B ’ K + Q = O  (3)

which is related to the linear constant dynamical system

~ (t) = Ax(t )  ÷ Bu( t) ,  x(t ) = x0. (4)

The corresponding result is that the system (4) is stabilizable if and only if for

each positive definite matrix Q there exists a positive definite solution K to

(3). We will obtain lower bounds of the solution to (3) in this note. Results for

(3) should coincide with those of (1) when B = 0. Bounds for the finite time

solution of the matrix differential Riccati equation are given in [4,5] for continu-

ous systems , and in [6,7] for discrete systems , in terms of the controllability and

observability matrices. These are compared with the results in this note for some

special cases. Applications of bounds for (1) are listed in [1,2) and similar

applications for bounds of (3) are possible.

II. Main Results

In the following, l x i  denotes the Euclidean vector norm and Hell the matrix

norm induced by the Euclidean norm, i.e.,

Ilcil sup i cx t  max x 1
~

2 (C ’ C) (5)
f x l i I I
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where A1
(M) denotes an eigenvalue of a matrix H. For a nonnegative definite

matrix S it holds that ll~~{l sup x’Sx = A (S) and inf x’Sx
1xf 1 1x 1 1

Theorem 1. Assume that Q is a symmetric positive definite matrix. The positive

definite solution matrix K to the algebraic matrix equation (3) has the following

bounds:

A . (Q)mm

If A l l  + { f f  A f f  + IIBB ’ Il x~~~(Q)}

A (Q)max
I KII > • (7)

— II A ll + (f( A f f  + ( I BB ’ ( (A (Q)}

Proof: P;~’e- and post-multiplying (3) by x ’ and x respectively yields

x ’KBB ’Kx - 2x ’A ’Kx .- x ’Qx = 0,

which can be expressed as

x ’KBB’Kx 1- 2 1x ’A ’Kx I - x ’Qx > 0. (8)

From the Schwarz Inequality we have

lx ’A ’Kx l .<. lA X l f 1 <~ l (9)

X ’J(BB’Kx < I B B ’K X I I K x J .5. JJ BB ’JJ Jx~J 2 (10)

Combining ( 8 ) ,  (9), and (10) yields
f

~ BB ’[~ ‘l1x 1 2 1- 2 1A x ( . l K x l — x ’Qx > 0. (11)

Since fkx f is nonnegative , it should satisfy

lxx i 
1 

~ 
~2 + JI BB T JJ ,Q 11/2} x’Qx

II BB’~f lAx I + (tAx i
2 

+ II BB’~ f x ’Qx}1~
’2

(12)

The last equality in (12) follows from the following identity
I.

a + /a2 + be) (a + i/a2 + bc} = bc.

_ _ _ _ _ _ _ _ _  - 
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Dividing both sides of (12) by lx i yields

x’Qx x’Qx

lxx i 1x1
2 

lx 1
2

I~ l lAx I + { IAx I2 
+ 
~ 
BB’~ 

xIQx}
l/2 

~ A ll + {ii A l l
2 

+ 
~ 

BB~~ 
x t
Qx}

h’2

l x i  lx i J x J lx i

For a > 0 and b > 0, it can be shown that the function

f(x ) 
_______ (14)

a + / a2 +bx

is monotonically increasing with respect to x for x > 0. Thus we have

I
K >  A . (K)I = inf 1 KX1 i >  

A. (Q) 
(15)

— mm x lx i II A ll + ( II  A l l 2 
+ 

~ BB ’fl 
X.(Q)}L’2

and

A (Q)
lix il = ~ (K) > 

max (16)max II A ll + (II A ll 2 + II BB ’I~ A (Q))1~
”2

This completes the proof.

By taking B = 0, the results in (6) and (7) coincide with those of [1,2].

The results in (6) and (7) are sharp in the sense that its estimations are exact

in some cases as shown in the following example. It is also demonstrated in the

example that the estimations in Theorem 1 are better than those of [4,8] for some

special cases of Q > 0.

Example: (a) Let A = - I, B I, Q = 31. Then ii A l l = 
~ 

BB’fl = 1. From (6)

and (7)~ K > I and ~J KJI > 1. The exact solution to (3) is K = I. This shows

that the estimations in (6) and (7) are exact in this case. In [4] it is suggested
-2T ~-lthat K ‘ - 

2 
2T + 

e 
2 J  

for any T > 0, which implies K > ~(ñ -1)1. Also in
3(l—e ) 

3[8) it is suggested that K I.

(b) Let A 0, B = bI, and Q q I. From (6) and (7) K > I and

II xfl > ~~. The exact solution to (3) Is K I. Thus the estimations of (6) and

P: (7) in this case are exact. It is suggested in [4] that K �k-~’-— + b2T)~~ I for
q2T
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any T > 0, which implies K > I.

By a slight modification the results in Theorem 1 can be applied to the discrete

algebraic matrix Riccati equation

K ~‘K~ — Zt ’KB(I + B ’KB Y 1B’K. + Q, (17)

which can be transformed to

K~~~ BB ’K + K~~
1 

- (Q BB ’ + ~‘)K - Q~~] 
= 0. (18)

The corresponding result can be given as follows.

Theorem 2. Assume that ‘~‘ is nonsingular, Q nonnegative definite, and

(Q4~~ + *~t ’~~~Q) nonsingular. The positive definite solution matrix K to the

discrete algebraic matrix Riccati equation (17) has the following bounds:

V . (Q~’~
1)

mm
— ff Gil { Il Gil ~ 4~ BB ’~~’ fi 

~min~~~ ~

I (Q4’~
1)max

~ Gil 
+ (Ii 011 2 + 4~ BB’~ ’~~II 

~max~~~~~~~
2

where

0 - - BB ’~~’
1Q (21)

Vmin
(
~~ 

.
~
.miniA

~
(C + C ’ ) l  (22 )

~
‘max~~ 4maxlxj(C + C’)( (23)

The results in Theorem 2 can be obtained from the fact that inf Ix ’Cx l 1 . ( c )

and sup lx ’Cx l 
~max~~~’ 

By taking B 0 the results in Theorem 2 apply to the -:
lxI=1

discrefe Lyapunov matrix equation, •‘K~ - K -Q. It is also true that the estima-

tions in (19) and (20) are exact for some special cases and thus better than those

estimations in [7] in certain cases.

III. Correction to [2 ,1)

In this section we use the same notations as [2,1]. Since the equation (17)

__ ----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~
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in [2], 

8
ii (A’)~~

PA
~~l6= ~~~~, (24)

is not generally true, Theorem 2 in [2] which claims

B
a > —fl----- (25)1/2a1

is invalid.

r i o l  r-i ol ri ol
Counter example: Let P = and A = . Then A ’ 1PA 1 

= J ~j ,
0 2  0-2 [O

~~~J

~ 
A ’~~PA~~If 2 1, ~~ = 2, and a1 = 1. Thus the inequality (24) does not hold .

The solution matrix Q of the Lyapunov equation is Q [
~ ~

J . 
Thus a~ =

which shows that the relation (25) is invalid. — 
2

8
The relation (25) also appeared in [1] and should be changed to a~ >

2a
which can be obtained from (7) by taking B = 0.

0
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